| 1. | Weighted kernel estimator of nonparametric regression functions with censored data of sequences 相依截尾数据非参数回归函数加权核估计 |
| 2. | Convergence rate of the estimate of the regression function under martingale difference sequence 误差为鞅差序列的回归函数估计的收敛速度 |
| 3. | Strong consistency for the weighted kernel estimation of a regression function under - mixing error condition 混合误差下回归函数加权核估计的强相合性 |
| 4. | Strong uniform converbence rates of wavelet estimates of regression function under complete and censored data 完全与删失数据下回归函数小波估计的强一致收敛速度 |
| 5. | In this paper , we discuss the estimate of regression function in nonparametric regression model based on exponential integral martingale difference 摘要本文研究了误差项是鞅差序列,且满足某种指数矩条件的非参数回归函数的估计。 |
| 6. | And then ols was applied to construct the regression model between them respectively . as a result , three regression functions could be constructed to establish the indirect relationship between the two spaces 4 、选取了在卫生与医学研究领域中两个比较典型的实例,运用偏最小二乘回归对它们分别予以分析。 |
| 7. | The essence of the above estimating methods is local estimator or local smoothing technique . in general , the non - parametric regression function is . well estimated by the above methods when the covariable x is one dimension 这些方法本质上讲都是局部估计或局部光滑,当回归变量x为一维变量时,非参数回归函数用这些方法一般都能得到很好的估计。 |
| 8. | In the nonparametric regression the regression function is supposed to be from some function family , such as the smoothing functions . so the nonparametric regression needs few hypotheses and is very robust 非参数回归一般假定回归函数属于某一个函数类,如常常假定回归函数是一个光滑的函数,因此非参数回归对模型的假设很少,最主要的优点就是模型具有稳健性。 |
| 9. | Satisfactory results were obtained . by combining the traditional neural network method with the svr theory , this paper also addresses the problem of boundary value problems and replaces the neural network function with svr regression function 此外,在本课题中,我们把传统的神经网络解边值问题的方法和svr理论相结合,用svr中的回归函数代替神经网络函数,对边值问题的求解进行了研究。 |